

ADVANCED GCE

MATHEMATICS Core Mathematics 3 4723

Candidates answer on the Answer Booklet

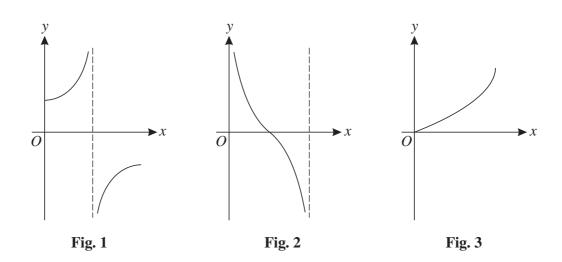
OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Monday 1 June 2009 Morning

Duration: 1 hour 30 minutes



INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

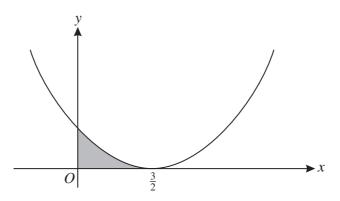
INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

2

Each diagram above shows part of a curve, the equation of which is one of the following:

 $y = \sin^{-1} x$, $y = \cos^{-1} x$, $y = \tan^{-1} x$, $y = \sec x$, $y = \csc x$, $y = \cot x$.


State which equation corresponds to

(i) Fig. 1,	[1]
(ii) Fig. 2,	[1]

(iii) Fig. 3.

2

1

The diagram shows the curve with equation $y = (2x - 3)^2$. The shaded region is bounded by the curve and the lines x = 0 and y = 0. Find the exact volume obtained when the shaded region is rotated completely about the *x*-axis. [5]

3 The angles α and β are such that

$$\tan \alpha = m + 2$$
 and $\tan \beta = m$,

where *m* is a constant.

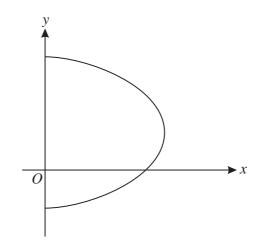
- (i) Given that $\sec^2 \alpha \sec^2 \beta = 16$, find the value of *m*. [3]
- (ii) Hence find the exact value of $tan(\alpha + \beta)$.

[3]

[1]

(i) Show that
$$a = \frac{1}{9}\ln(300 + 3e^a - 2e^{3a})$$
. [5]

3


- (ii) Use an iterative process, based on the equation in part (i), to find the value of *a* correct to 4 decimal places. Use a starting value of 0.6 and show the result of each step of the process. [4]
- 5 The functions f and g are defined for all real values of x by

$$f(x) = 3x - 2$$
 and $g(x) = 3x + 7$.

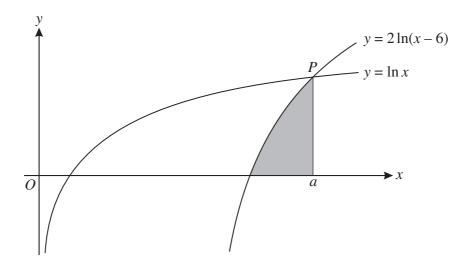
Find the exact coordinates of the point at which

- (i) the graph of y = fg(x) meets the x-axis,
- (ii) the graph of y = g(x) meets the graph of $y = g^{-1}(x)$, [3]
- (iii) the graph of y = |f(x)| meets the graph of y = |g(x)|.

6

The diagram shows the curve with equation $x = (37 + 10y - 2y^2)^{\frac{1}{2}}$.

- (i) Find an expression for $\frac{dx}{dy}$ in terms of y. [2]
- (ii) Hence find the equation of the tangent to the curve at the point (7, 3), giving your answer in the form y = mx + c. [5]
- 7 (i) Express $8 \sin \theta 6 \cos \theta$ in the form $R \sin(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]
 - (ii) Hence
 - (a) solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation $8 \sin \theta 6 \cos \theta = 9$, [4]
 - (b) find the greatest possible value of


 $32\sin x - 24\cos x - (16\sin y - 12\cos y)$

as the angles *x* and *y* vary.

[3]

[3]

[4]

4

The diagram shows the curves $y = \ln x$ and $y = 2\ln(x-6)$. The curves meet at the point *P* which has *x*-coordinate *a*. The shaded region is bounded by the curve $y = 2\ln(x-6)$ and the lines x = a and y = 0.

- (i) Give details of the pair of transformations which transforms the curve $y = \ln x$ to the curve $y = 2\ln(x-6)$. [3]
- (ii) Solve an equation to find the value of *a*.
- (iii) Use Simpson's rule with two strips to find an approximation to the area of the shaded region.

[3]

[4]

9 (a) Show that, for all non-zero values of the constant k, the curve

$$y = \frac{kx^2 - 1}{kx^2 + 1}$$

has exactly one stationary point.

(b) Show that, for all non-zero values of the constant *m*, the curve

$$y = e^{mx}(x^2 + mx)$$

has exactly two stationary points.

[7]

[5]

Copyright Information

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

4723 Core Mathematics 3

State $y = \cot x$ State $y = \sin^{-1} x$	B1 B1 B1		
Either: State or imply $\int \pi (2x-3)^4 dx$	B1		or unsimplified equiv
•			any constant k involving π or not
• • • •			any constant κ involving λ of not
			1
2		_	subtraction correct way round
Obtain $\frac{243}{10}\pi$	Al	5	or exact equiv
<u>Or</u> : State or imply $\int \pi (2x-3)^4 dx$	B1		or unsimplified equiv
Expand and obtain integral of order 5	M1		with at least three terms correct
Ob'n $\frac{16}{5}x^5 - 24x^4 + 72x^3 - 108x^2 + 81x$	A1		with or without π
Attempt evaluation using (0 and) $\frac{3}{2}$	M1		
Obtain $\frac{243}{10}\pi$	A1	(5) 5	or exact equiv
Attempt use of identity for $\sec^2 \alpha$	M1		using $\pm \tan^2 \alpha \pm 1$
Obtain $1 + (m+2)^2 - (1+m^2)$	A1		absent brackets implied by subsequent
	4.1	2	correct working
Obtain $4m + 4 = 16$ and hence $m = 3$	AI 	3 	
Attempt subn in identity for $tan(\alpha + \beta)$	M1		using $\frac{\pm \tan \alpha \pm \tan \beta}{1 \pm \tan \alpha \tan \beta}$
Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$	A1 ⁻	V	following their <i>m</i>
Obtain $-\frac{4}{7}$	A1	3	or exact equiv
		6	
Obtain $\frac{1}{3}e^{3x} + e^x$	B1		
	B1		or equiv
5 5			
	M1		as far as $e^{9a} = \dots$
Introduce natural logarithm	M1		using correct process
Obtain $a = \frac{1}{9} \ln(300 + 3e^a - 2e^{3a})$	A1	5	AG; necessary detail needed
Obtain correct first iterate	 B1		allow for 4 dp rounded or truncated
Show correct iteration process			with at least one more step
Obtain at least three correct iterates in all	A1		allowing recovery after error
Obtain 0.6309	A1	4	following at least three correct steps; answer required to exactly 4 dp
$[0.6 \rightarrow 0.631269 \rightarrow 0.630$	884		
	State $y = \sin^{-1} x$ Either: State or imply $\int \pi (2x-3)^4 dx$ Obtain integral of form $k(2x-3)^5$ Obtain $\frac{1}{10}(2x-3)^5$ or $\frac{1}{10}\pi (2x-3)^5$ Attempt evaluation using 0 and $\frac{3}{2}$ Obtain $\frac{243}{10}\pi$ Or: State or imply $\int \pi (2x-3)^4 dx$ Expand and obtain integral of order 5 Ob'n $\frac{16}{5}x^5 - 24x^4 + 72x^3 - 108x^2 + 81x$ Attempt evaluation using (0 and) $\frac{3}{2}$ Obtain $\frac{243}{10}\pi$ Attempt use of identity for sec ² α Obtain $1 + (m+2)^2 - (1+m^2)$ Obtain $1 + (m+2)^2 - (1+m^2)$ Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$ Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$ Obtain $-\frac{4}{7}$ Obtain $\frac{1}{3}e^{3x} + e^x$ Substitute to obtain $\frac{1}{3}e^{9a} + e^{3a} - \frac{1}{3}e^{3a} - e^a$ Equate definite integral to 100 and attempt rearrangement Introduce natural logarithm Obtain $a = \frac{1}{9}\ln(300 + 3e^a - 2e^{3a})$ Obtain correct first iterate Show correct iteration process Obtain 1 least three correct iterates in all Obtain 0.6309	State $y = \sin^{-1} x$ B1Either:State or imply $\int \pi (2x-3)^4 dx$ B1Obtain integral of form $k(2x-3)^5$ M1Obtain $\frac{1}{10}(2x-3)^5$ or $\frac{1}{10}\pi(2x-3)^5$ A1Attempt evaluation using 0 and $\frac{3}{2}$ M1Obtain $\frac{243}{10}\pi$ A1Or:State or imply $\int \pi (2x-3)^4 dx$ B1Expand and obtain integral of order 5M1Ob'n $\frac{16}{5}x^5 - 24x^4 + 72x^3 - 108x^2 + 81x$ A1Attempt evaluation using (0 and) $\frac{3}{2}$ M1Obtain $\frac{243}{10}\pi$ A1Attempt use of identity for sec ² α M1Obtain $1 + (m+2)^2 - (1+m^2)$ A1Obtain $1 + (m+2)^2 - (1+m^2)$ A1Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$ A1Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$ A1Obtain $\frac{4}{7}$ A1Obtain $\frac{1}{3}e^{3x} + e^x$ B1Substitute to obtain $\frac{1}{3}e^{9a} + e^{3a} - \frac{1}{3}e^{3a} - e^a$ B1Equate definite integral to 100 and attempt rearrangementM1Obtain $a = \frac{1}{9} \ln(300 + 3e^a - 2e^{3a})$ A1Obtain correct first iterateB1Show correct iteration processM1Obtain at least three correct iterates in all A1A1	State $y = \sin^{-1} x$ B1 3 B1 3 B1 3 B1 3 B1 3 B1 B1 3 B1 B1 3 B1 B1 3 B1 B1 3 B1 B1 B1 B1 B1 Cbtain integral of form $k(2x-3)^5$ M1 Obtain $\frac{10}{10}(2x-3)^5$ or $\frac{1}{10}\pi(2x-3)^5$ A1 Attempt evaluation using 0 and $\frac{3}{2}$ M1 Obtain $\frac{243}{10}\pi$ A1 5 Or: State or imply $\int \pi(2x-3)^4 dx$ B1 Expand and obtain integral of order 5 M1 Ob'n $\frac{16}{5}x^5 - 24x^4 + 72x^3 - 108x^2 + 81x$ A1 Attempt evaluation using (0 and) $\frac{3}{2}$ M1 Obtain $\frac{243}{10}\pi$ A1 (5) S Attempt use of identity for sec ² α M1 Obtain $1 + (m+2)^2 - (1+m^2)$ A1 Obtain $1 + (m+2)^2 - (1+m^2)$ A1 Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$ A1 Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$ A1 $$ Obtain $-\frac{4}{7}$ A1 3 C Obtain $\frac{1}{3}e^{3x} + e^x$ B1 Substitute to obtain $\frac{1}{3}e^{9a} + e^{3a} - \frac{1}{3}e^{3a} - e^{a}$ B1 Equate definite integral to 100 and attempt rearrangement M1 Introduce natural logarithm M1 Obtain $a = \frac{1}{9}\ln(300 + 3e^a - 2e^{3a})$ A1 5 Obtain correct iteration process M1 Obtain at least three correct iterates in all A1

Mark Scheme

5 (i)	Either: Show correct process for comp'n Obtain $y = 3(3x+7) - 2$	M1 A1		correct way round and in terms of <i>x</i> or equiv
	Obtain $x = -\frac{19}{9}$	A1	3	or exact equiv; condone absence of $y = 0$
	<u>Or</u> : Use $fg(x) = 0$ to obtain $g(x) = \frac{2}{3}$	B1		
	Attempt solution of $g(x) = \frac{2}{3}$	M1		
	Obtain $x = -\frac{19}{9}$	A1	(3)	or exact equiv; condone absence of $y = 0$
(ii)	Attempt formation of one of the equations			
	$3x+7 = \frac{x-7}{3}$ or $3x+7 = x$ or $\frac{x-7}{3} = x$	M1		or equiv
	Obtain $x = -\frac{7}{2}$	A1		or equiv
	Obtain $y = -\frac{7}{2}$	Alv	3	or equiv; following their value of <i>x</i>
(iii)	Attempt solution of modulus equation	M1		squaring both sides to obtain 3-term quadratics or forming linear equation with signs of 3x different on each side
	Obtain $-12x + 4 = 42x + 49$ or 3x - 2 = -3x - 7	A1		or equiv
	$\begin{array}{l} 5x & 2 = -5x \\ \text{Obtain } x = -\frac{5}{6} \end{array}$	Al		or exact equiv; as final answer
	Obtain $y = \frac{9}{2}$	A1	4	or equiv; and no other pair of answers
		-	10	
6 (i)	Obtain derivative $k(37+10y-2y^2)^{-\frac{1}{2}}f(y)$	M1		any constant k ; any linear function for f
	Obtain $\frac{1}{2}(10-4y)(37+10y-2y^2)^{-\frac{1}{2}}$	A1	2	or equiv
(ii)	Either: Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	*M1		
	Take reciprocal of expression/value	*M1		and without change of sign
	Obtain -7 for gradient of tangent	A1		
	Attempt equation of tangent Obtain $y = -7x + 52$	M1 A1	5	dep *M *M
	Obtain $y = -7x + 52$	AI	5	and no second equation
	<u>Or</u> : Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	M1		
	Attempt formation of eq'n $x = m'y + c$	M1		where m' is attempt at $\frac{dx}{dy}$
	Obtain $x - 7 = -\frac{1}{7}(y - 3)$	A1		or equiv
	Attempt rearrangement to required form Obtain $y = -7x + 52$	M1 A1	(5) 7	and no second equation

4723

Mark Scheme

7 (i)	State $R = 10$ Attempt to find value of α	B1 M1		or equiv implied by correct answer or its complement; allow sin/cos muddles
	Obtain 36.9 or $\tan^{-1}\frac{3}{4}$	A1	3	or greater accuracy 36.8699
(ii)(a)	Obtain (64.16 + 36.87 and hence) 101 Show correct process for finding second	M1 A1		or greater accuracy 101.027
	angle Obtain (115.84 + 36.87 and hence) 153	M1 A1√	4	following their value of α ; or greater accuracy 152.711; and no other between 0 and 360
(b)	Recognise link with part (i)	M1	-	signalled by 40 – 20
	Use fact that maximum and minimum values of sine are 1 and -1 Obtain 60	M1 A1	-	may be implied; or equiv
8 (i)	Refer to translation and stretch	M1		in either order; allow here equiv informal
	State translation in x direction by 6 State stretch in y direction by 2 [SC: if M0 but one transformation complete	A1 A1 elv cor	3 rec	terms such as 'move', or equiv; now with correct terminology or equiv; now with correct terminology t. give B11
(ii)	State $2\ln(x-6) = \ln x$	B1		or $2\ln(a-6) = \ln a$ or equiv
	Show correct use of logarithm property Attempt solution of 3-term quadratic Obtain 9 only	*M1 M1 A1	4	dep *M following correct solution of equation
(iii)) Attempt evaluation of form $k(y_0 + 4y_1 + y_2)$ M1 any constant k; maybe with $y_0 = 0$ implied			
(111)	Obtain $\frac{1}{3} \times 1(2 \ln 1 + 8 \ln 2 + 2 \ln 3)$	Al		or equiv
	Obtain 2.58	A1	-	or greater accuracy 2.5808
9 (a)	Attempt use of quotient rule	*M1		or equiv; allow numerator wrong way round
) (a)		1411		and denominator errors
	Obtain $\frac{(kx^2+1)2kx - (kx^2-1)2kx}{(kx^2+1)^2}$	A1		or equiv; with absent brackets implied by
	Obtain correct simplified numerator $4kx$	A1		subsequent correct working
	Equate numerator of first derivative to zero State $x = 0$ or refer to $4kx$ being linear or			dep *M
	observe that, with $k \neq 0$, only one sol'n	A1√	5	AG or equiv; following numerator of form $k' kx = 0$, any constant k'

4723

Mark Scheme

(b)	Attempt use of product rule Obtain $me^{mx}(x^2 + mx) + e^{mx}(2x + m)$	*M1 A1	or equiv
	Equate to zero and either factorise with factor e^{mx} or divide through by e^{mx} Obtain $mx^2 + (m^2 + 2)x + m = 0$ or equiv and observe that e^{mx} cannot be zero	M1 A1	dep *M
	Attempt use of discriminant Simplify to obtain $m^4 + 4$ Observe that this is positive for all <i>m</i> and hence two roots	M1 A1 A1 7 12	using correct $b^2 - 4ac$ with their <i>a</i> , <i>b</i> , <i>c</i> or equiv or equiv; AG

4723